China Professional Forged 42CrMo4 4140 Steel Roll Axle/ Steel Mill Roll Axle axle cost

Product Description

MaHangZhou CZPT Technology Co., Ltd. has the capacity to guarantee the quality for every step, from raw material (forging), then heating treatment, finally machining. We have our own forging mill, heating teatment shop and machining shop. At present we could supply various of lage main axles and shaft, turbin shaft, cylinder shaft, windy generator shaft, roller shaft, wheel forging, drill bit forging and kinds of irregular parts based on the drawing provided by customers.

Steel material for shaft and forging parts:
 

Engineering Steel  
GB
GB/T 700
JIS
JIS G3101
DIN (W-Nr.)
EN10571-2 / DIN17100
AISI/ASTM
ASTM A36
BS OTHERS
Q235B SS400 S235JR / RST37-2 A36    
Q235C   S235J0 / ST37-3 U      
Q235D   S235J2      
GB
GB/T1591
JIS DIN (W-Nr.)
EN10571-2 / DIN17100
AISI/ASTM BS OTHERS
Q355B   S355JR      
Q355C   S355J0 / ST52-3U      
Q355D   S355J2 / ST52-3 N      
Q355E   S355K2      
GB
GB/T 699
JIS
JIS G4051
DIN (W-Nr.)
EN 10083-2
AISI/ASTM
ASTM A20
BS OTHERS
      1018 EN2C  
20 S20C C20 1571 EN3B/070M20 ASTM A105
35 S35C C30 1035    
45 S45C C45E/1.1191 1045 EN8D/080M40  
50 S50C C50/1.1206 1050 080M50  
55 S55C C55 1055 EN9/070M55  
GB
GB/T 3077
JIS
JIS G4105/JIS G4103
DIN (W-Nr.)
EN 15710
AISI/ASTM
ASTM A29
BS
BS 970
OTHERS
40Cr SCr440 41Cr4(1.7035) 5140    
15CrMo SCM415 16CrMo44/1.7337      
20CrMo SCM420 18CrMo4/1.7243 4118    
30CrMo SCM430 25CrMo4/1.7218 4130 708A25/708M25  
42CrMo SCM440 42crmo4/1.7225 4140 EN19/709M40  
  SCM445   4145    
40CrNiMoA SNCM 439/SNCM8 36CrNiMo4/1.6511 4340 EN24/817M40  
    40NiMoCr10-5/1.6745   EN26/826M40  
    34CrNiMo6 / 1.6582 4337    
    30CrNiMo16-6/1.6747 4330V EN30B/835M30  
    32CrMo12/1.7361   EN40B/722M24  
16CrMnH / 20CrMnTi   16MnCr5 / 1.7131 5115    
20CrMn   20MnCr5 / 1.7147      
    15CrNi6/1.5919 3115    
    16NiCr4/1.5714   EN351/637M17  
      4615/4617 EN34/665M17  
    14NiCr14/1.5752 3310/3415 EN36/655M13  
    15NiCrMo16-5/1.6723   EN39/835M15  
17CrNiMo6   18CrNiMo7-6 (1.6587) 4815    
20CrNiMo SNCM220 1.6523/21NiCrMo2 8620 805M20  
    20CrNiMo5   EN353  
GCr15 SUJ2 52100/1.3505   EN31/535A99  
38CrMoAl SACM645 41CrAlMo7/34CrAlMo5   905M39/905M31 41CrAlMo74(ISO)

 

 

 Rear Axles 10 Wheel Hub Bolts lage main axles

We King Rail were already engaged in exporting steel railway wheels , axles ,bearings and other forging products for about 12 years, materials are a great variety of hot forged, hot rolled and cold drawn Steels,  including engineering steel, cold work tool steel, hot work tool steel, plastic mold steel, spring steel, high speed steel, stainless steel etc., besides King Rail also has their own heating treatment shop and machining shop to provide heating treatment, cutting and further machining service.

Since 2012 year,  we has the right to export all FORGED STEEL behalf of MaHangZhou CZPT Technology Co., Ltd. which is specialized in melting and forging of special steel since 1965 year, now King Rail is 1 of the biggest manufacturer of forged product in China.The forged products are used in Automotive, Aerospace, Power Generation, Oil & Gas, Transportation and Industrial. 

Till 2013 year, many customers need HOT ROLLED and COLD DRAWN steel from Masteel Industrial, in order to provide one-stop solution to our customers,  began to cooperate with Xihu (West Lake) Dis.bei Special Steel (HangZhou and HangZhou mill), Baosteel, Tiangong International, Changcheng Special Steel for hot rolled tool steel, cooperate with HangZhou Speical Steel, HangZhou HangZhou Speical Steel, Shagang Group, CZPT Group for hot rolled engineering steel. Now we already set up the warehouse in ZheJiang and ZheJiang City, more than 20000 tons ex-stock could be supplied with kinds of sizes.

Then from 2018 year, King Rail decide to provide further manufacturer processing service, at present we could supply various of lage main shaft, turbin shaft, cylinder shaft, windy generator shaft, roller shaft, wheel forging, drill bit forging and kinds of irregular parts based on the drawing provided by customers.

King Rail  is the professional one-stop steel manufacturer and trader, stockist and exporter in China, our customers spread all over the world, include West Europe, North America, South America, Asia, Middle Asia, Africa, Australia, etc.

The company owns advanced special steel smelting facilities and forging processing equipments, the main steel-making equipment include 2 sets of 50t ultra-high power electric arc furnaces,2 sets of 60t LF refining furnaces,1 set of 60t vacuum degassing refining CZPT and 4 sets of 1-20t electroslag re-melting furnaces.
The main forging equipments mainly include:3 sets of 5t electro-hydraulic hammers, 1 set of high-speed forging units of 800t,1600t,2000t and 4500t respectively.

For Further Information, Please Contact Me Here Now!
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Free After Service
Warranty: Free After Service
Customized: Customized
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

axle

What is the role of axles in electric vehicles, and how do they differ from traditional axles?

Electric vehicles (EVs) have unique requirements when it comes to their drivetrain systems, including the axles. The role of axles in EVs is similar to traditional vehicles, but there are some key differences. Here’s a detailed explanation of the role of axles in electric vehicles and how they differ from traditional axles:

Role of Axles in Electric Vehicles:

The primary role of axles in electric vehicles is to transmit torque from the electric motor(s) to the wheels, enabling vehicle propulsion. The axles connect the motor(s) to the wheels and provide support for the weight of the vehicle. Axles are responsible for transferring the rotational force generated by the electric motor(s) to the wheels, allowing the vehicle to move forward or backward.

In electric vehicles, the axles are an integral part of the drivetrain system, which typically includes an electric motor(s), power electronics, and a battery pack. The axles play a crucial role in ensuring efficient power transfer and delivering the desired performance and handling characteristics of the vehicle.

Differences from Traditional Axles:

While the fundamental role of axles in electric vehicles is the same as in traditional vehicles, there are some notable differences due to the unique characteristics of electric propulsion systems:

1. Integration with Electric Motors: In electric vehicles, the axles are often integrated with the electric motors. This means that the motor(s) and axle assembly are combined into a single unit, commonly referred to as an “electric axle” or “e-axle.” This integration helps reduce the overall size and weight of the drivetrain system and simplifies installation in the vehicle.

2. High Torque Requirements: Electric motors generate high amounts of torque from the moment they start, providing instant acceleration. As a result, axles in electric vehicles need to handle higher torque loads compared to traditional axles. They are designed to withstand the torque output of the electric motor(s) and efficiently transmit it to the wheels.

3. Regenerative Braking: Electric vehicles often utilize regenerative braking, which converts the vehicle’s kinetic energy into electrical energy and stores it in the battery. The axles in electric vehicles may incorporate systems or components that enable regenerative braking, such as sensors, controllers, and electric brake actuators.

4. Space Optimization: Electric vehicles often have different packaging requirements compared to traditional internal combustion engine vehicles. The axles in electric vehicles are designed to accommodate the space constraints and specific layout of the vehicle, considering the placement of the battery pack, electric motor(s), and other components.

5. Weight Considerations: Electric vehicles strive to optimize weight distribution to enhance efficiency and handling. Axles in electric vehicles may be designed with lightweight materials or innovative construction techniques to minimize weight while maintaining structural integrity and durability.

It’s important to note that the specific design and characteristics of axles in electric vehicles can vary depending on the vehicle manufacturer, drivetrain configuration (e.g., front-wheel drive, rear-wheel drive, all-wheel drive), and other factors. Automotive manufacturers and suppliers continually innovate and develop new axle technologies to meet the evolving demands of electric vehicle propulsion systems.

axle

What are the symptoms of a failing CV joint, and how does it relate to the axle?

A CV (constant velocity) joint is an essential component of the axle assembly in many vehicles. When a CV joint starts to fail, it can exhibit several symptoms that indicate potential problems. Here’s a detailed explanation of the symptoms of a failing CV joint and its relationship to the axle:

Symptoms of a Failing CV Joint:

1. Clicking or popping sounds: One of the most common signs of a failing CV joint is a clicking or popping sound when making turns. This noise usually occurs during tight turns and may indicate worn-out or damaged CV joint bearings.

2. Grease leakage: A failing CV joint may leak grease, which can be seen as dark-colored grease splattered around the CV joint or on the inside of the wheel. Grease leakage is typically caused by a cracked or damaged CV joint boot, which allows the lubricating grease to escape and contaminants to enter.

3. Excessive vibration: A worn-out CV joint can cause vibrations, especially during acceleration. The vibrations may be felt in the steering wheel, floorboards, or even the entire vehicle. These vibrations can become more noticeable as the CV joint deteriorates further.

4. Difficulty in turning: As the CV joint wears out, it may become difficult to turn the vehicle, especially at low speeds or when making sharp turns. This symptom is often accompanied by a clicking or popping sound.

5. Uneven tire wear: A failing CV joint can lead to uneven tire wear. If the CV joint is damaged or worn, it can cause the axle to wobble or vibrate, resulting in uneven tire tread wear. This can be observed by visually inspecting the tires and noticing uneven patterns of wear.

Relationship to the Axle:

The CV joint is an integral part of the axle assembly. It connects the transmission to the wheels and allows smooth power delivery to the wheels while accommodating the up-and-down motion of the suspension. The axle shaft is responsible for transmitting torque from the transmission to the CV joints and ultimately to the wheels.

Axles contain one or more CV joints, depending on the vehicle’s drivetrain configuration. In front-wheel drive vehicles, each front axle typically has two CV joints, one inner and one outer. Rear-wheel drive and all-wheel drive vehicles may have CV joints on both the front and rear axles.

The CV joint consists of a joint housing, bearings, and internal ball bearings or rollers. It is protected by a rubber or thermoplastic CV joint boot, which seals in the grease and protects the joint from contaminants. When the CV joint fails, it can affect the axle’s ability to transmit power smoothly and result in the symptoms mentioned above.

Regular inspection and maintenance of the CV joint and axle assembly are crucial to identify and address any issues promptly. If any of the symptoms mentioned earlier are observed, it is recommended to have the vehicle inspected by a qualified mechanic to determine the exact cause and perform necessary repairs or replacements.

axle

How do solid axles differ from independent axles in terms of performance?

When comparing solid axles and independent axles in terms of performance, there are several key differences to consider. Both types of axles have their advantages and disadvantages, and their suitability depends on the specific application and desired performance characteristics. Here’s a comparison of solid axles and independent axles:

Aspect Solid Axles Independent Axles
Load-Bearing Capability Solid axles have high load-bearing capability due to their robust and sturdy construction. They can handle heavy loads and provide excellent stability, making them suitable for off-road vehicles, heavy-duty trucks, and towing applications. Independent axles typically have lower load-bearing capability compared to solid axles. They are designed for lighter loads and offer improved ride comfort and handling characteristics. They are commonly used in passenger cars, sports cars, and vehicles with a focus on maneuverability and road performance.
Wheel Articulation Solid axles have limited wheel articulation due to their connected and rigid design. This can result in reduced traction and compromised wheel contact with the ground on uneven terrain. However, solid axles provide excellent traction in situations where the weight distribution on all wheels needs to be maintained, such as in off-road or rock-crawling applications. Independent axles offer greater wheel articulation as each wheel can move independently of the others. This allows the wheels to better conform to uneven terrain, maximizing traction and maintaining contact with the ground. Independent axles provide improved off-road capability, enhanced handling, and better ride comfort.
Ride Comfort Due to their rigid design, solid axles generally provide a stiffer and less compliant ride compared to independent axles. They transmit more road shocks and vibrations to the vehicle’s occupants, resulting in a rougher ride quality. Independent axles are known for providing better ride comfort. Each wheel can react independently to road imperfections, absorbing shocks and vibrations more effectively. This leads to a smoother and more comfortable ride, particularly on paved roads and surfaces with minor irregularities.
Handling and Stability Solid axles offer excellent stability due to their connected nature. They provide better resistance to lateral forces, making them suitable for high-speed stability and towing applications. However, the rigid axle design can limit overall handling and maneuverability, particularly in tight corners or during quick direction changes. Independent axles generally offer improved handling and maneuverability. Each wheel can react independently to steering inputs, allowing for better cornering performance and agility. Independent axles are commonly found in vehicles where precise handling and responsive steering are desired, such as sports cars and performance-oriented vehicles.
Maintenance and Repair Solid axles are relatively simpler in design and have fewer moving parts, making them easier to maintain and repair. They are often more resistant to damage and require less frequent servicing. However, if a component within the axle assembly fails, the entire axle may need to be replaced. Independent axles are typically more complex in design and have multiple moving parts, such as control arms, CV joints, or bearings. This complexity can result in higher maintenance and repair costs. However, if a failure occurs, only the affected component needs to be replaced, reducing repair expenses compared to replacing the entire axle.

It’s important to note that advancements in suspension and axle technologies have resulted in various hybrid systems that combine features of solid and independent axles. These systems aim to provide a balance between load-bearing capability, wheel articulation, ride comfort, and handling performance based on specific application requirements.

In summary, solid axles excel in load-bearing capability, stability, and durability, making them suitable for heavy-duty applications and off-road conditions. Independent axles offer improved ride comfort, better wheel articulation, enhanced handling, and maneuverability, making them suitable for passenger cars and vehicles focused on road performance. The choice between solid axles and independent axles depends on the specific needs and priorities of the vehicle or machinery.

China Professional Forged 42CrMo4 4140 Steel Roll Axle/ Steel Mill Roll Axle   axle costChina Professional Forged 42CrMo4 4140 Steel Roll Axle/ Steel Mill Roll Axle   axle cost
editor by CX 2024-05-10


Comments

Leave a Reply

Your email address will not be published. Required fields are marked *